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Summary 

The application of multicriteria optimization to planetary gear train is the objective in 

this paper. A model of planetary gear multicriteria optimization based on an original 

algorithm is created.  

The basis of the algorithm are experimentally determined approximations of analytical 

expressions for volume, mass, efficiency and production costs. The following is adopted as 

optimization variables: teeth numbers, number of planets, module and facewidth. Conditions 

required for the proper functioning of the system in the scope of geometry and strength are 

expressed by the functional constraints.  

Apart from the determination of the set of Pareto optimal solutions, methods for 

choosing the optimal solution from this set are included in the mathematical model. The 

complete optimization procedure is implemented in PlanGears software. Based on numerical 

examples obtained by the application of this software, the comparison of the optimization 

methods and program results analysis is presented. 

Key words: planetary gear train, multicriteria optimization, mathematical model, 

Pareto optimal solutions 

1. Introduction 

The multi-objective optimization is a method which is implemented in the development 

of many products and processes in various ways. The number and actuality of published 

researche indicate the importance and contemporaneity of optimization topics. 

Multicriteria optimization problems are very common in many scientific and technical 

solutions. Optimization of gear trains as concrete technical systems supposes a very complex 

mathematical model which has to describe the operation of a real system in real 

circumstances. 

Planetary gear trains are an important kind of gear transmissions and they also can be 

the subject of multicriteria optimization. It is impossible to include every type of these 

transmissions in the same paper, especially taking into consideration that they have their own 

geometrical conditions and can also be one-stage and multi-stage. 

In the available literature, there are not many papers about the application of 

multicriteria optimization on gear transmissions, especially on planetary gear transmissions. 
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In reference [1], design problems of gears with minimal dimensions are indicated. A 

population-based evolutionary multi-objective optimization approach, based on the concept of 

Pareto optimality, is proposed in paper [2] in order to design helical gears (minimize both the 

mass of the gearing and the flank adhesive wear speed). Paper [3] presents the choice of the 

best parameters optimization for obtaining the required gear quality and the optimization of 

the designing process itself. An analytical and computer aided procedure for the multicriteria 

design optimization of multistage gear transmission is presented in paper [4].  

A simple, descriptive and easy-to-handle method for investigating the transmission 

ratio, the internal power flows and efficiency of complex multiplanetary gearings is 

introduced in [5]. The process of planetary gear transmission optimization is shown in paper 

[6] as a method which leads to optimum (housing diameter and gear volume are considered in 

order to achieve their minimum). A possible model for finding the solution to this problem is 

the application of stochastic methods, where parameter values vary by accidental numbers. 

This paper provides an optimization of the basic type of planetary gear train. The 

presented approach is based on the original algorithm which is the basis of the mathematical 

model. The optimization of planetary gear transmission is conducted using four criteria, 

including the economic criterion, which makes this optimization task a sort of techno-

economical optimization. 

In order to make a different approach than the models in which an optimal solution is 

adopted by analising the solutions from the set of Pareto solutions [4,6], the application of 

multicriteria optimization methods for choosing an optimal solution from Pareto solutions is 

included in this paper, as well as their comparison. Several multicriteria optimization methods 

are briefly decribed and applied to planetary gear transmissions.  

2. Mathematical model for planetary gear train optimization 

The basic type of planetary gear train (PGT), i.e. a design which has a central sun gear 

(external gearing - 1), central ring gear (internal gearing - 3), planets (satellites - 2) and carrier 

(h), shown in Fig.1, is the subject of the paper, limited to geared pairs. Planets are 

simultaneously in contact with the sun gear and ring gear.  

This type of PGT is often used as single stage transmission, so as a building block for 

higher compound planetary gear trains. 

Its advantage according to other PGT types lies, first of all, in its efficiency. The 

efficiency value varies negligibly in all range of internal gear ratio ( 13 z/zp  ). Also, this 

type has small overall dimensions and mass and its production costs are relatively low 

because of the relatively simplified production.
 

Because of its characteristics, it is applicable in transport and stationary machines 

without limitation in power and velocity, for example in the responsible parts of the 

helicopter, caterpillar, mining, agricultural and other machines and so on. 

An optimization task is defined by the variables, objective functions and conditions 

required for the proper functioning of a system determined by the functional constraints.  
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Fig.1  Basic type of planetary gear train (1- sun gear; 2 – planet; 3 – ring gear; h – carrier) 

2.1 Variables 

In the scope of the mathematical model definition, it is necessary to determine the 

variables since each objective function is the function of several parameters.  

In this paper, the following variables are considered: teeth number of central sun gear 

1z , teeth number of planets 2z , teeth number of ring gear 3z , number of planets wn , gear 

module nm  and facewidth b . 

The optimization variables are of mixed type: numbers of gear teeth ( 1z , 2z , 3z ) are 

integers, positive and negative, number of planets ( wn )  is a discrete value, module ( nm ) is a 

discrete standard value (acc. to DIN 780), while facewidth (b ) is a continual variable. 

Numbers of gear teeth and number of planets are non-dimensional values, while module and 

gear width are given in millimeters. 

The facewidth as a variable is introduced due to the ratio of pinion facewidth to pinion 

reference diameter.  

In the case where 21 zz   the the range of the parameter
1

/b d  , is defined according 

to the ratio 13 z/zp  , 101 .pminbd   and 1801 .pmaxbd   (if 7501 .maxbd  , it is 

necessary to adopt limit value). If the relation of 21 zz   exists, the parameter ψ is introduced 

as 
2

/b d   [7]. 

In this way it is possible to vary the facewidth, wile gear teeth have the same values. 

This procedure is implemented in the developed software. 

The fact that for gear ratio 𝑖 < 4 the planet is smaller than the sun gear , i.e. 21 zz  , is 

taken into account. First of all, this fact had to be considered due to introducing the facewidth 

and gear module as variables.  

2.2 Objective functions 

In this model, the following characteristics are chosen for objective functions of a 

planetary gear train: volume, mass, efficiency and production cost of gear pairs. 

2.2.1 Volume 

The volume of gear pairs is used as overall dimensions expression and the 

approximation of gear by cylinder volume with diameter equal to pitch diameter and height 
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equal to facewidth.  The fact that planets are inside the ring gear makes it possible for the gear 

volume to be expressed by: 
2
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where t  is the the transverse pressure angle, 23wt  is the working transverse pressure 

angle for the pair 2-3 and   is the helix angle at pitch diameter. 

2.2.2 Mass 

Mass is determined as sum of all gear masses in transmission. Since the mass of a 

particular gear is determined as gear volume multiplied by the density of gear material, 

zz Vm   , the final expression of this function is: 
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To determine the gear mass, the factor of deviation of real gear shape from cylinder (k) 

has to be taken into account also. For purposes of optimization, i.e. the comparison of gears 

with different parameters, this factor does not have a great significance, since it is given in 

advance due to the hub gear form and it is a constant in the process of optimization. 

2.2.3 Efficiency 

This is one of the most important criteria for the design and evaluation of construction 

quality. Power losses in planetary transmissions consist of losses in gears contact, losses in 

bearings and losses due to oil viscosity. The calculation of gear transmissions efficiency is 

generally confined to losses depending on friction on tooth sides, i.e. on calculation of contact 

power losses [8,9,10].  

According to previous efficiency remarks and having in mind the fact that the subject of 

optimization is is limited to gear pairs, we consider the following expression for efficiency 

[10]: 

 3

3 1 1 2 3
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z

z z z z z

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2.2.4 Production cost 

Economic demands must also be taken into consideration in techno-economical 

optimization. First, these demands are related to production costs. These costs consist of  

production material and the production process costs. The time needed for the production of 

gears is taken as a measure of production costs and as an economic factor. This function is 

then determined as a sum of time periods needed for the production of central sun gear ( 1T ), 

planets ( 2T ) and ring gear ( 3T ), i.e.  

 321 TTnTF wT 
 
         (4) 

Production times are determined according to the technologies of Fette [11], Lorenc 

[12] and Höfler [13].  

2.3 Functional constraints 

Planetary gear trains represent a specific group of gear trains. Therefore, there are 

numerous exceptions that need to be taken into account for these transmissions to function 
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correctly compared with classical gear transmissions. The exceptions presented in this article 

are related to mounting conditions, geometrical conditions and strength conditions. 

 The mounting conditions comprise the condition of coaxiality, the condition of 

adjacency and the condition of conjunction [14]. 

Geometrical conditions relate to undercutting and profile interference, ratio of pressure 

angle to working transverse pressure angle, tooth thickness and space width, transverse 

contact ratio value, sliding speeds, ratio of pinion facewidth to pinion reference diameter, etc. 

These conditions are ensured in accordance with the actual standards (ISO TC 60 list of 

standards 090915). 

The strength conditions, safety factors for bending strength and surface durability of 

each gear, are provided. For the calculation of load and stress distribution of externally 

toothed pairs of gears, efficient techniques have been developed, among them the standards 

for basic calculation DIN 3990 and ISO 6336. The special characteristics of internal toothing, 

however, are only incompletely taken into account within them. In order to take into 

consideration the complex connection of internal toothing in planetary gear trains, guideline 

VDI 2737 has been developed in form of short-term applicability [15]. In this work, safety 

factors for bending strength and surface durability of each gear are provided according to ISO 

6336-1 to ISO 6336-3 [16]. 

Explicit constraints related to the selection of teeth numbers ( 1z , 2z , 3z ), planets number 

wn  and standard values for module nm  are included in calculation procedures. 

2.4 Optimization procedure 

The shortened algorithm for the complete optimization procedure is shown in Fig. 2. 

 

 

Fig.2  Shortened algorithm for optimization procedure 
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For the given input data (input number of revolution, input torque, service life in hours, 

application factor, accuracy grade (Q-DIN3961), minimal safety factor - flank, minimal safety 

factor - root, gears materials, allowed deviation of gear ratio, range of 1z  variation), all 6-

tuples of design parameters 1 2 3( , , , , , )w nz z z n m b  satisfying the functional constraints are 

generated and the values of the objective functions for every 6-tuple are computed (marked 

with a capital letter "A" and number).The set of feasible solutions is obtained. 

In this generation it is necessary to determine the the profile shift coefficients and the 

value of the mesh load factor. 

The profile shift coefficients are calculated for each planetary gear train determined by 

variables using the program module which is a part of the PlanGears software. The center 

distance is calculated using variables and rounded to standard value. The next step is the 

calculation of profile shift coefficients sum for external gearing and distribution of that sum. 

In this numerical examples, the distribution according to MAAG is used. At the end of this 

module, the ring gear profile shift coefficient is calculated. 

The value of the mesh load factor K  is adopted as the function of planets number. 

There is a program module for mesh load factor choice for planetary gear train determined by 

variables and the existence of methods (actions) for equalizing distribution of the load 

between meshes for multiple paths. 

Next, it is necessary to choose only one optimal solution among all the generated 

solutions. Methods for solving the multicriteria optimization problems are presented in the 

next section. The complete optimization procedure is implemented in the newly developed 

PlanGears software. The software is written in the programming language Delphi 7.0 and 

contains  a complete 39 step procedure. 

3. Multicriteria optimization 

In most of optimization problems, several functions which need to be optimized are 

considered, but they cannot all have optimal values at the same time. Such problems are 

called non-trivial multiple criteria (or multiple objective, multicriteria) optimization problems 

[17]. Several methods for solving multicriteria optimization problems are formulated in this 

section. These formulations are adapted so that they can be directly applied to the planetary 

gear trains design. 

The mathematical model of nonlinear multicriteria problem can be formulated as 

follows: 

 
1 2max { ( ), ( ),..., ( )}

subject to 

kf x f x f x

x S
        (5) 

Functions 1( ), , ( )kf x f x  are objective functions and 
1 n

x= x ,…,x( )  is vector of 

decision variables. These variables must satisfy given constraints which are expressed as 

inclusion x S  where S  is the set of feasible solutions (or feasible set). The notation "max" 

means the simultaneous maximization of all the objective functions. If some objective 

function needs to be minimized a simple fact that minimization of the function ( )if x  is 

equivalent to the maximization of the function ( )if x can be used. Every point x S  is 

mapped to the point 1 2( ( ), ( ),..., ( ))kf x f x f x  in k - dimensional objective space. Therefore, it 

can be introduced as the objective set: 

  SxxfxfxfF k  |))(),...,(),(( 21        (6) 
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In the formulated problem, six variables exist, corresponding to the basic design 

parameters: 1 2 3 4 5 6 1 2 3( , , , , , ) ( , , , , , )w nx x x x x x x z z z n m b  . Also, four objective functions equal 

to the volume ( )(xV ), mass ( )(xm ), efficiency  ( )(x ) and production costs ( )(xT ) exist. 

Since mass, volume and production costs should be minimized, and efficiency should be 

maximized, the following is denoted in this model: 

 
1 2

3 4

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( )p

f x V x f x m x

f x x f x T x

   

  
       (7) 

Furthermore, the set S  will be defined as the set of all 6-tuples of design parameters 

such that functional constraints (subsection 2.3) are satisfied. According to the procedure 

described  in Fig. 2, there are finitely many feasible solutions. Hence, the considered 

multicriteria optimization problem (5) is discrete. All methods that will be applied require a 

single pass or several (but constant) passes through the feasible set S. Hence the 

implementation does not suffer from local maximum (minimum) trapping. 

It is often useful to know the best possible values for each objective function. These 

values form a so-called ideal point * * *

1( , , )kf f f  in the objective space. Its components 

are computed as  

 
* max ( ),   for all  1, , .i i

x S
f f x i k


         (8) 

As it can be seen from the definition, multicriteria optimization problems are 

mathematically ill-defined. This means that they have a set of mathematically “equally good” 

optimal solutions in the objective space. The most important criterion for selecting these 

“equally good” solutions is Pareto optimality concept: 

 Solution x S  is Pareto optimal if there is no solution y S  such that holds 

( ) ( )i if x f y  for all 1, ,i n  and for at least one index i  holds strict inequality, i.e. 

( ) ( )i if x f y . 

Thus, some additional information is needed in order to be able to select one of them as 

the final solution. This final decision is usually made either by decision maker (human expert) 

or by the corresponding scalarized problem. In the latter case, one or more single criterion 

optimization scalarized problems have to be constructed and solved. Several methods based 

on the construction of scalarized problem are presented next.  

3.1 Weighted coefficients method 

In this method the following scalarized problem is constructed: 

 
0 0

1 1max ( ) ( ) ( )

s.t. 

M

m mf x w f x w f x

x S

  


      (9) 

Here, weighted coefficients (or weights) iw  are positive real numbers and 
0 0 1( ) ( ) ( )i i if x f f x  are normalized objective functions where 0

if  are normalizing 

coefficients. In this approach, the components of ideal point * * * * *

1 2 3 4( , , , )f f f f f  are used as 

normalizing coefficients, i.e. 0 *

i if f  for 1,2,3,4i  . Therefore, absolute values of all 

objective functions are between 0 and 1, which simplifies the choice of the weighted 

coefficients. All solutions obtained by this method are Pareto optimal.  
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3.2 Lexicographic method 

Assuming that objective functions are sorted by the given priorities, it can be observed 

that if 
1
( )kf x  has maximum priority, then

2
( )kf x , etc. and ( )

mkf x  has the least priority. Then, 

the following list of scalarized problems for 1, ,i m   can be solved: 

 

max ( )

s.t. 

( ) ,  for  1, , 1

i i

j j

opt

k k

opt

k k

f f x

x S

f x f j i





  

       (10) 

Thus, objective functions are maximized sequentially, and the feasible set is reduced by 

iterations to the set of optimal solutions in previous iteration.  The solution obtained by this 

method is also Pareto optimal. 

3.3  ε- constraints method 

In the ε- constraints method, one objective function ( )qf x  has to be maximized under 

the primary and additional conditions is chosen. These additional conditions are in the form of 

[18] ( )i if x  , where i , i q are given thresholds. Therefore, the following scalarized 

problem is solved: 

 

max ( )

s.t. 

( ) ,  for  1, , ,  

q

i i

f x

x S

f x i n i q



  

       (11) 

In this case, a systematic variation of i  the set of Pareto optimal solutions is created 

[19]. This method is commonly used because it is possible to exactly control the values of all 

objectives, which is also very important in practical applications. 

3.4 Distance method 

The main idea in this method is the minimization of distance between one given 

(infeasible) reference point zf  and the objective set F . The following scalarized problem 

can be formulated in this way: 

 
min ( ( ), )

s.t. 

zd f x f

x S
         (12) 

Here ( , )d x y  can be any metric function. In this implementation, Euclidean distance is 

used, thus distance obtains the shape: 

  

Here iw  are given positive real numbers, weight coefficients. Usually, an ideal point *f  

is used as a reference point. Under the condition 0iw   for all 1, ,i n  , it can be proven 

that the  solution obtained by this method, using Euclidean metric, is Pareto optimal. 

4. Numerical examples 

In this section, for gear ratio i  in recommended range, the number of 6-tuples 

1 2 3( , , , , , )w nz z z n m b  satisfying the functional constraints is first determined. This is shown in 

Fig 3. It can be seen that distribution of number of solutions regarding gear ratio is 

approximately normal (Gauss) distribution. The same holds for the gear transmissions applied 

in the industry. 

2

1
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Fig.3  Numbers of feasible solutions 

 

Next, the input data is chosen for examples of optimization methods application: 

35.i  , 1000inn min-1, 
in

T  520 Nm, 8000L   h, 251.K A  , 7IT  for all gears, material 1z

/material 2z /material 3z =20MoCr4/20MoCr4/34CrNiMo6, 11.S minH  , 21.S minF  , %i 4 , 

30151 z ,;,.  

The number of Pareto solutions is 45. The ideal values of functions are determined 

and shown in Table 1. 

Table 1  Ideal point coordinates 

1
idf in mm3 2

idf in kg 3
idf  

4
idf in min 

1247030.66 6.61 0.992 151.825 

 

The Euclidean distance method with an ideal point as a reference point gives the 

solution, from Pareto set, shown in Table 2, with a set of objective functions values shown in 

Table 3. 

Table 2  Solution obtained by Euclidean distance method  

Solution Variable values 

1 1x z  2 2x z  3 3x z  4 wx n  5 nx m  6x b  

A2911 29 48 -124 3 2.25 29 

 

Table 3  Objective function for solution A2911 

Solution 
1f  in mm3 2f in kg 3f  4f  in min 

A2911 1793746.05 8.432 0.991 190.564 

 

Taking into consideration the fact that it is necessary  to determine the priority of 

functions for the next methods anticipated here, the following examples are noted. 

Example 1. Let the function 1f  be the priority function. The obtained solution is given 

in Table 4, with the set of objective functions in Table 5. This solution is obtained by all of 

the methods: the weighted coefficients method, the lexicographic method and the  - 

constraints method.  
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Table 4  Solution obtained by prioritizing the function 1f  

Solution Variable values 

1 1x z  2 2x z  3 3x z  4 wx n  5 nx m  6x b  

A1197 23 37 -97 4 2.5 27 

Table 5  Objective function for solution A1197 

Solution 
1f  in mm3 2f in kg 3f  4f  in min 

A1197 1247030.66 6.6105 0.989 184.7404 

Example 2. Prioritizing the function 2f , all applied methods also indicated the solution 

A1197. 

Example 3. Prioritizing the function 3f , all applied methods point to the solution 

A3240, Table 6 and Table 7.  

Table 6  Solution obtained by prioritizing the function 3f  

Solution Variable values 

1 1x z  2 2x z  3 3x z  4 wx n  5 nx m  6x b  

A3240 30 51 -130 4 2 28 

Table 7  Objective function for solution A3240 

Solution 
1f  in mm3 2f in kg 3f  4f  in min 

A3240 1524475.33 8.00 0.992 230.055 

 

Solution A3240 is much closer to the solution obtained by the Euclidean distance 

method than the solution to which the priority of functions 1f  and 2f point. The reason is the 

aforementioned fact that for obtaining the maximum of function 3f , a planetary gear train of 

huge dimensions is needed.  

Example 4. Finally, function 4f  is assumed as the priority function. The weighted 

coefficients method and the  - constraints method point to the solution A324, Table 8 and 

Table 9. The application of the lexicographic method gives solution A39, Tables 10 and 11. 

Table 8  Solution obtained by weighted coefficients method and by prioritizing the function 4f  

Solution Variable values 

1 1x z  2 2x z  3 3x z  4 wx n  5 nx m  6x b  

A324 20 32 -85 3 3 31 

Table 9  Objective function for solution A324 

Solution 
1f  in mm3 2f in kg 3f  4f  in min 

A324 1563334.317 7.45 0.987 153.3 

Table 10  Solution obtained by lexicographic method by prioritizing the function 4f   

Solution Variable values 

1 1x z  2 2x z  3 3x z  4 wx n  5 nx m  6x b  

A39 17 28 -73 3 3.5 32 
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Table 11  Objective function for solution A39 

Solution 
1f  in mm3 2f in kg 3f  4f  in min 

A39 1651105.128  7.802 0.985 151.825 

 It is obvious that in this example the choice for optimal solution is between A39 and 

A324, and the solution A39 is adopted. 

5. Comparison of optimization methods and program results analysis 

Solutions obtained by these methods for multicriteria optimization are coordinated. The 

methods, although starting from different prepositions and having different mathematical 

bases, lead to harmonized results, which provide a physical meaning.  

 Particularly, the coordination between the weighted coefficients method and the 

lexicographic method can be easily observed. These two methods give identical results in 

three examples, but that is not the case in example 4. The weighted coefficients method 

reduces the problem to one single criterion optimization problem, and the lexicographic 

method requires solving three single optimization problems. When the fourth function has the 

priority, there are only few solutions in the first iteration, and they mainly have a small 

number of gear teeth. The priority of other functions has a very small influence on the final 

solution and hence is given consequently. 

The  -constraints method can be important if significant constraints are recognized. 

This method is especially applicable in situations when one function has the primary 

importance, while others must be in the range of some allowed limits. Setting the limits for 

functions has significant influence on the result. In these examples, the aim was to set the 

limits closer to ideal point in order to make the comparison of methods. This means that if 

constraints are not decisive, but are the priority of functions, some other methods should be 

applied. 

The Euclidean distance method does not take into consideration preferences of 

particular criteria. This method is very suitable in the case when there is some referent 

solution which is usually infeasible. By applying this method, the solution closest to this 

referent solution is obtained. A good choice for the referent solution is an ideal point.  

It can be concluded that, in the case of the existence of priority functions it is suitable to 

give precedence to the weighted coefficients method due to very clear physical meaning and 

experience in application to technical systems optimization [4,6]. It is also possible to apply 

this method in the case of equal priority functions.  

Results of the computer program can be shown by diagrams- criterion space. Based on 

all of them, the cause-effect relations between particular objective functions given as their 

absolute values can be determined. The next figures show the following characteristic 

criterion spaces. It can be observed that functions 1f  and 2f  m,V  , Fig. 4, have a strong 

correlation, almost a linear one. It is in accordance with the nature of these functions and the 

established mathematical model. The dependence of the criteria 2f  and 3f ,  ,m ,  Fig. 5, 

consists of the family of lines parallel to the x  – axis. It can be seen that 2f  and 3f  are not 

correlated. Efficiency values 3f  vary in the short range, since in this model efficiency is 

defined only as a function of teeth numbers.  The dependence of criteria 1f  and 3f ,  ,V , 

Fig. 6, has the same shape in the criteria space as the dependence in Fig.5. This is in 

accordance with the first conclusion of a very strong correlation between criteria 1f  and 2f . 

Also, the same shape has the dependence of criteria 3f  and 4f ,  T, , Fig. 7. That can be 

explained by the direct dependence of function 4f  from functions 1f  and 2f , shown in next 
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figures, Fig. 8 and Fig 9.  The dependence of criteria 2f  and 4f ,  T,m   , Fig. 8, is the 

direct dependence, but weaker than the dependence between 1f  and 2f . Some dispersion in 

the y -axis direction can be observed. This dependence is also justified and expected, because 

the production costs naturally depend on mass (  mfT  ). It is not linear, since 4f  does not 

only include the gear mass but also the other production costs, which are expressed by very 

complicated relations. However, the dependence can be described by the set of almost parallel 

lines. The dependence of criteria 1f  and 4f ,  T,V    has the same shape, Fig. 9. 

  

 Fig. 4  Dependence of the criteria 1f  and 2f  Fig. 5  Dependence of the criteria 2f  and 3f  

  

 Fig. 6  Dependence of the criteria 1f  and 3f  Fig. 7  Dependence of the criteria 3f  and 4f   

  

 Fig. 8  Dependence of the criteria 2f  and 4f  Fig. 9  Dependence of the criteria 1f  and 4f  

It can be concluded that functions 1f  and 2f  have a strong correlation, function 4f  is 

weakly correlated with 1f  and 2f , while function 3f  has no dependences. 
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Prioritizing the function 1f  or 2f  in this numerical example indicates the same solution 

(PGT determined by design parameters) with the same set of objective functions. The 

application of this procedure and other examples, i.e. with different input data, usually yields 

the same conclusion but that is not always the case. Some examples are close, but they do not 

give the same values. Therefore, it should not be concluded that it is sufficient to use only one 

function. It is more appropriate to use both functions for further optimization. 

6. Conclusion 

In this paper, an original model for multicriteria optimization of planetary gear trains 

is presented. The complete optimization procedure based on an original algorithm is 

implemented in the newly developed PlanGears software. The basic type of planetary gear 

train is the subject of the paper. The mathematical model consists of objective functions, 

variables and functional constraints. Besides the determination of the set of Pareto optimal 

solutions, the presented original approach includes methods which select an optimal solution 

for the input data from the Pareto solutions set. There are: weighted coefficients method, 

lexicographic method, the  - constraints method and distance method.  

Based on numerical examples obtained by application of this software, the comparison 

of the optimization methods and program results analysis are presented. Although the 

methods start from different prepositions and have different mathematical basis, they lead to 

harmonized results, which provide  them a physical meaning. As an illustration of program 

possibilities, a graphical review as diagram-criteria space is also shown. From it, the mutual 

dependence and connections between objective functions are pointed to. The connections 

between objective functions obtained from diagram-criteria space are in accordance with the 

nature of the functions and the established model.  

This approach is original in planetary gear train optimization and can be successfully 

used for the basic planetary gear train type. Results obtained in this way are in accordance 

with the literature on technical system optimization and indicate a good choice of applied 

methods. Furthermore, this approach indicates a possibility for application to other planetary 

gear train types. 

 

REFERENCES 

[1] Kiselev, S.: Laws of Design of Cylindrical Gears of the Minimal Dimensions. Machine Design, 

Monograph on 49th Anniversary of the Technical Science, Novi Sad, Serbia, 2009, , pp. 201-204. 

[2] Tudose, L., Buiga, O., Jucan, D., and Stefanache, C.: Multi-Objective Optimization in Helical Gears 

Design, The Fifth International Symposium about Design in Mechanical Engineering-KOD 2008, Novi 

Sad, Serbia, pp. 77-84. 

[3] Tkachev, A. and Goldfarb, V.: The Concept of Optimal Design for Spur and Helical Gears,  The 3rd 

International Conference Power Transmissions '09, October 2009, Chalkidiki, Greece, pp.59-62. 

[4] Rosić, B.: Multicriterion Optimization of Multistage Gear Train Transmission,  Facta Universitatis, 

series: Mechanicl Engineering, published by University of Niš, Serbia, Vol.1, N08, 2001, pp. 1107-1115. 

[5] Arnaudow, K., and Karaivanov, D.: Einfache Bestimmung-Systematik, Eigenschaften und Möglichkeiten 

von zusammengesetzten Mehrsteg-Planetengetrieben. Antriebstechnik 5/2005, pp. 58-65. 

[6] Brüser P., and Grüschow G. Otimierung von Planetengetrieben. Antiebstechnik 2/89, Nr. 2, pp. 64-67.  

[7] Кудрявцев В. Н.: Планетарные  передачи, "Maшиностроение", Ленинград, 1977. 

[8] Chen C. and Angeled J.: Virtual-Power Flow and Mechanical Gear-Mesh Power Losses of Epicyclic Gear 

Trains. Journal of Mechanical Design, Transactions of the ASME, January 2007, Vol. 129/107-113. 

[9] Del Castillo, J.M. The Analytical Expression of the Efficiency of Planetary Gear Trains. Mechanism and 

Machine Theory 37, Elsevier (2002) 197-214. 

[10] Volmer, J. Getriebetechnik, Umlaufrädergetriebe, Verlag Technik, Berlin, 1990. 



J. Stefanovic,  M. Petković,  

I. Stanimirović, M. Milovančević A Model of Planetary Gear Multicriteria Optimization   

[11] FETTE - Technologie - Ihr Profit, Die Schnittbedingungen beim Wälzfräsen, WILHELM FETTE, GMBH 

[12] Verzahnwerkzeuge, Ein Handbuch für Konstruktion und Betrieb 3. Auflage, Verzahntechnik LORENZ 

GmbH&Co Ettlingen 

[13] BHS HÖFLER operating instructions, 630-1000/2./125÷630-1000/2./166, 630-1000/4./01÷630-

1000/2./67 

[14] Niemann G., Winter H.: Maschinenelemente, Band II, Zweite völlig neubearbeite Auflage, Springer-

Verlag Berlin, 1989. 

[15] Linke, H., Trempler U. and Baumann F.: Analysis of the Stress of Toothings of Planetary Gearing. 

International Conference on Gears, VDI - BERICHTE NR.1904, Munich 2005, Proceedings, pp 345-355. 

[16] ISO 6336. Calculation of load capacity of spur and helical gears, 2006. 

[17] Miettinen, K. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999). 

[18] Haimes, Y.Y., Lasdon L.S., and Wismer D.A.: On a bicriterion formulation of the problems of integrated 

system identification and system optimization. IEEE Trans. Syst. Man Cybern. SMC-1, (1971) 296–297. 

[19] Hwang, C.L., Masud, A.S.M., in collaboration with Paidy, S.R. and Yoon, K.: Multiple objective decision 

making, methods and applications: a state-of-the-art survey. In: Beckmann, M.; Kunzi, H.P. (eds.) 

Lecture Notes in Economics and Mathematical Systems, No. 164. Berlin: Springer-Verlag, 1979. 

Submitted: date 

Accepted:  

Jelena Stefanović-Marinović, Ph.D., Assistant Professor 

Miloš Milovančević, Ph.D., Assistant Professor  

Faculty of Mechanical Engineering, University of Niš, Serbia  

 

Marko Petković, Ph.D., Assistant Professor 

Ivan Stanimirović, B. Sc. 

Faculty of Science and Mathematics, University of Niš, Serbia 

 


